- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Kanász-Nagy, Márton (4)
-
Demler, Eugene (2)
-
Demler, Eugene A. (2)
-
Greif, Daniel (2)
-
Greiner, Markus (2)
-
Grusdt, Fabian (2)
-
Ashida, Yuto (1)
-
Chiu, Christie S. (1)
-
Cirac, J. Ignacio (1)
-
Dolgirev, Pavel E (1)
-
Fölling, Simon (1)
-
Ikeda, Tatsuhiko N. (1)
-
Ji, Geoffrey (1)
-
Lovas, Izabella (1)
-
Mazurenko, Anton (1)
-
Moca, Cătălin Paşcu (1)
-
Parsons, Maxwell F. (1)
-
Robens, Carsten (1)
-
Schmidt, Richard (1)
-
Seetharam, Kushal (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Boltzmann equation is a powerful theoretical tool for modeling the collective dynamics of quantum many-body systems subject to external perturbations. Analysis of the equation gives access to linear response properties including collective modes and transport coefficients, but often proves intractable due to computational costs associated with multidimensional integrals describing collision processes. Here, we present a method to resolve this bottleneck, enabling the study of a broad class of many-body systems that appear in fundamental science contexts and technological applications. Specifically, we demonstrate that a Gaussian mixture model can accurately represent equilibrium distribution functions, thereby allowing efficient evaluation of collision integrals. Inspired by cold atom experiments, we apply this method to investigate the collective behavior of a quantum Bose-Fermi mixture of cold atoms in a cigar-shaped trap, a system that is particularly challenging to analyze. We focus on monopole and quadrupole collective modes above the Bose-Einstein transition temperature, and find a rich phenomenology that spans interference effects between bosonic and fermionic collective modes, dampening of these modes, and the emergence of hydrodynamics in various parameter regimes. These effects are readily verifiable experimentally. Published by the American Physical Society2024more » « less
-
Kanász-Nagy, Márton; Lovas, Izabella; Grusdt, Fabian; Greif, Daniel; Greiner, Markus; Demler, Eugene A. (, Physical Review B)
-
Kanász-Nagy, Márton; Ashida, Yuto; Shi, Tao; Moca, Cătălin Paşcu; Ikeda, Tatsuhiko N.; Fölling, Simon; Cirac, J. Ignacio; Zaránd, Gergely; Demler, Eugene A. (, Physical Review B)
-
Mazurenko, Anton; Chiu, Christie S.; Ji, Geoffrey; Parsons, Maxwell F.; Kanász-Nagy, Márton; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene; Greif, Daniel; Greiner, Markus (, Nature)
An official website of the United States government
